INTENDED USE

PCRun™ Canine Babesia gibsoni Molecular Detection Kit is intended for detection of Babesia gibsoni in DNA isolated from canine whole blood. The kit can be used for detection of acute infections. It contains all the disposable components required for performing an easy and accurate test.

PRINCIPLE

PCRun™ Canine Babesia gibsoni kit is a molecular assay based on isothermal amplification of part of the mitochondrial protein-coding gene, Cytochrome B oxidase (cob). It is intended for the qualitative detection of Babesia gibsoni. The kit is designed to be used with a compatible PCRun™ Reader.

STORAGE AND HANDLING

- Storage 2-25°C (room temperature or refrigerated).
- Avoid exposure to direct sunlight.
- Do not use beyond expiration date stated on the package label.
- Do not freeze!

Precautions:

The PCRun™ assay is not to be used on the specimen directly. An appropriate nucleic acid extraction method must be conducted prior to using this kit.

- In order to avoid the introduction of contaminating DNA into the reaction, clean laboratory examination gloves must be worn while performing the test.
- Open and remove the PCRun™ reaction tubes from the sealed pouches only immediately prior to their use.
- Return unused PCRun™ reaction tubes to the original aluminum packet together with the desiccator. Seal with tape.
- Do not use kit if the pouch or the components are damaged.
- Each component in this kit is suitable for use only with a specific lot number. Components have been quality control approved as a standard batch unit. Do not mix components from different lot numbers.
- Employ accepted sanitary procedures designated for biological and molecular waste when handling and disposing of the reaction tubes.

BACKGROUND

Babesia gibsoni is an intraerythrocytic apicomplexan parasite that causes piroplasmosis in dogs. The organisms are pleomorphic and appear most commonly within erythrocytes as individual ring forms or piriform bodies. The disease is transmitted naturally by ticks, but transmission by dog bites, blood transfusions as well as transmission via the transplacental route to the developing fetus have been reported. Infections with B. gibsoni have been identified worldwide, and it is now recognized as a serious emergent disease in small animal medicine. The parasite is considered endemic in Asia, Africa, the Middle East, North America and Australia.1,2 Clinical manifestations are variable and are mainly characterized by remittent fever, progressive anemia, thrombocytopenia, marked splenomegaly, hepatomegaly, and in some cases, death. The incubation period varies between 2-40 days depending on the route of infection and number of parasites in the inoculum. Most recovered dogs develop a state of premunition that is a balance between the host’s immune response and the parasite’s ability to induce clinical disease. In this state, dogs are at risk of recrudescence. Treatment is not effective in eliminating the parasite and recovered dogs commonly become chronic carriers, becoming a source for transmission of the disease via ticks to other animals. To effectively control the spread of B. gibsoni infections, rapid, accurate diagnosis followed by prompt effective treatment and the prevention of chronic carriers are imperative.3

DIAGNOSIS

The simplest and most accessible diagnostic tool is the compilation of diagnostic symptoms and microscopic examination of Giemsa or Wright’s-stained capillary blood smears during acute infection. However, the diagnosis of chronically infected and carrier dogs remains a significant challenge due to very low and often intermittent parasitemia. The Immunofluorescence Antibody Assay (IFA) Test can be used to detect dogs with occult Babesiosis but antibodies employed in this test display cross reactivity between B. canis and B. gibsoni. Similar difficulties exist with ELISA testing. During primary infections, dogs with acute Babesiosis can be serologically negative, necessitating repeated testing using convalescent sera. Treatment choices are largely dependent on the Babesia species identified therefore accurate classification is necessary. Individual Babesia species have historically been characterized by size and morphological appearance of the intra-erythrocytic forms therefore further differentiation of the species based on parasite recognition using blood smears is required. Parasite morphology by microscopic examination is prone to subjective error, but species specific polymerase chain reaction (PCR) provides an alternative rapid diagnostic test with good sensitivity and specificity when blood samples are collected early in the course of the clinical disease, and prior to initiation of chemotherapy.4,5,6

KIT CONTENTS

<table>
<thead>
<tr>
<th>Components</th>
<th>16 Test Kit</th>
<th>48 Test Kit</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCRun™ strip of 8 lyophilized Babesia gibsoni single reaction tubes</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>PCRun™ buffer to re-dissolve lyophilized reaction pellets</td>
<td>2Vials, 200 μl</td>
<td>6Vials, 200 μl</td>
</tr>
<tr>
<td>PCRun™ lyophilized Babesia gibsoni positive control</td>
<td>1 Vial</td>
<td>1 Vial</td>
</tr>
<tr>
<td>Buffer to reconstitute and dilute positive control</td>
<td>1 vial, 800 μl</td>
<td>1 vial, 800 μl</td>
</tr>
</tbody>
</table>

EQUIPMENT TO BE SUPPLIED BY USER:

- DNA extraction kit designed for use with PCR reactions
- PCRun™ Reader aquired from Biogal
- Timer
- Small scissors
- Fine tipped permanent marker
- Protective laboratory gloves
- Accurate laboratory pipettes with aerosol barrier tips.
SAMPLE COLLECTION, STORAGE AND TRANSPORT

The kit is suitable for detecting nucleic acid extracted from whole blood employing most DNA extraction kits designed for use with PCR. Samples can be collected in EDTA, heparin or sodium citrate. Blood anticoagulants have a substantial consequence on PCR reactions therefore it is imperative that the optimal volume of blood is collected as indicated on the tube. For best results, recently acquired samples and freshly prepared DNA extracts are recommended for use with the PCRun™ kit. Unless otherwise recommended, samples and DNA extracts can be maintained at 2-8°C for up to 24 hours or -20°C for an extended period of time.

PROTOCOL - PCRun™ REACTION

1. Prepare a clean working area for the assay. Work area should be decontaminated with commercial household bleach (3.5%) diluted 1:10 with water.
2. Prepare all parts of the assay:
 - Extracted DNA sample
 - Pouch with reaction tubes
 - PCRun™ buffer
 - Pipettors for dispensing 5, 15 and 500 μl volume
 - PCRun™ Positive Control
 - Positive Control Dilution Buffer
 - Fine tipped permanent marker
 - PCRun™ Reader (Please refer to the PCRun™ Reader Instruction Manual for operating directions)
3. Positive Control
 A positive control is supplied with the kit. It is recommended that a positive control be run at the same time as the PCRun™ reactions.

Dilution to final concentration of 10⁶ copies/5 μl.

a. Add 500 μl Positive Control Dilution Buffer to the vial containing the lyophilized pellet. Vortex the vial and allow to stand 5 min at room temperature. Vortex again. The vial contains 10⁶ copies of the target gene/μl. Label the tube with the concentration. This dilution will be employed as the positive control.

b. Use 5 μl of the positive control in place of the DNA sample for PCRun™ positive control reactions. It is not advisable to repeatedly freeze and defrost the Positive Control. The remainder of solution should be aliquoted into small volumes and maintained at -20°C for later use.

The positive control can be a source of contamination therefore maximum attention must be applied to ensure that the positive control does not come in contact with any other kit components. The positive control should be added to the reaction tube following completion of the test samples.

4. Switch on the PCRun™ Reader and note that it is adjusted to 60°C. Once the PCRun™ Reader has reached the target temperature, continue with the reaction.
5. Remove the PCRun™ strip from its protective pouch. Take care to return the unused tubes to the aluminium envelope and seal completely with tape to maintain a dry environment. Eight individual reaction tubes are connected by a thin plastic spacer. Employing a small clean scissors, disconnect the required number of tubes without disturbing the lids. Tap the tubes lightly on a surface and observe that the small white pellet is located on the bottom of the tube.
6. Label the lid of the tubes clearly for sample identification.
7. Carefully open the lid of the reaction tubes, one at a time. Dispense 15 μl of PCRun™ Buffer to each reaction tube. Close the lid and incubate the mixture at room temperature for 1 minute to allow the pellet to completely dissolve.
8. Add 5 μl of DNA sample into the PCRun™ reaction tube and mix thoroughly. Close the lid of the tube firmly and tap the tube on a surface to bring all the fluid to the bottom of the tube.
9. Place the reaction tube into the PCRun™ Reader which has been pre heated to 60°C and incubate for exactly 1 hour. Do not open the tube cover during or at the end of the incubation period.

ANALYSIS OF PCRun™ REACTION

After one hour incubation, final results of each reaction will appear on the touch screen. Follow instructions found in the manual accompanying the PCRun™ Reader.

LIMITATIONS

As with any diagnostic test, results acquired with the PCRun™ Molecular Detection Test Kit should be interpreted in consideration of all clinical and laboratory findings. Animals undergoing treatment with anti-babesian drugs will most likely display a negative PCR result.

ANALYTICAL SENSITIVITY

The PCRun™ reaction can detect 10³ copies of the target gene in pure DNA.

REFERENCES

Manufacturer: Biogal Galed Labs. Acs. Ltd.
TELEPHONE: +972 (0)4 9898605 FAX: +972 (0)4 9898690
email: info@biogal.co.il www.biogal.co.il
Kibbutz Galed, 1924000 - Israel